Variable Selection by Perfect Sampling
نویسندگان
چکیده
Variable selection is very important in many fields, and for its resolution many procedures have been proposed and investigated. Among them are Bayesian methods that use Markov chain Monte-Carlo (MCMC) sampling algorithms. A problem with MCMC sampling, however, is that it cannot guarantee that the samples are exactly from the target distributions. This drawback is overcome by related methods known as perfect sampling algorithms. In this paper, we propose the use of two perfect sampling algorithms to perform variable selection within the Bayesian framework. They are the sandwiched coupling from the past (CFTP) algorithm and the Gibbs coupler. We focus our attention to scenarios where the model coefficients and noise variance are known. We indicate the condition under which the sandwiched CFTP can be applied. Most importantly, we design a detailed scheme to adapt the Gibbs coupler algorithm to variable selection. In addition, we discuss the possibilities of applying perfect sampling when the model coefficients and noise variance are unknown. Test results that show the performance of the algorithms are provided.
منابع مشابه
Model Selection for Mixture Models Using Perfect Sample
We have considered a perfect sample method for model selection of finite mixture models with either known (fixed) or unknown number of components which can be applied in the most general setting with assumptions on the relation between the rival models and the true distribution. It is, both, one or neither to be well-specified or mis-specified, they may be nested or non-nested. We consider mixt...
متن کاملAdvances and Applications in Perfect Sampling
Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. Perfect sampling algorithms are Markov Chain Monte Carlo (MCMC) methods without statistical error. The latter are used when one needs to get samples from certain (non-standard) distribu...
متن کاملA Bayesian genome-wide linkage analysis of quantitative traits for rheumatoid arthritis via perfect sampling
Rheumatoid arthritis is a complex disease caused by a combination of genetic, environmental, and hormonal factors, and their additive and/or non-additive effects. We performed a linkage analysis to provide evidence of rheumatoid factor IgM on linkage, based on Bayesian variable selection coupled with the new Haseman-Elston method. For statistical inferences to estimate unknown parameters, we ut...
متن کاملBayesian Adaptive Sampling for Variable Selection and Model Averaging
For the problem of model choice in linear regression, we introduce a Bayesian adaptive sampling algorithm (BAS), that samples models without replacement from the space of models. For problems that permit enumeration of all models BAS is guaranteed to enumerate the model space in 2p iterations where p is the number of potential variables under consideration. For larger problems where sampling is...
متن کاملHaplotype Block Partitioning and tagSNP Selection under the Perfect Phylogeny Model
Single Nucleotide Polymorphisms (SNPs) are the most usual form of polymorphism in human genome.Analyses of genetic variations have revealed that individual genomes share common SNP-haplotypes. Theparticular pattern of these common variations forms a block-like structure on human genome. In this work,we develop a new method based on the Perfect Phylogeny Model to identify haplo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2002 شماره
صفحات -
تاریخ انتشار 2002